A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction

نویسندگان

  • C. Hofreither
  • S. Takacs
  • W. Zulehner
  • Clemens Hofreither
  • Walter Zulehner
چکیده

The fast solution of linear systems arising from an isogeometric discretization of a partial differential equation is of great importance for the practical use of Isogeometric Analysis. For classical finite element discretizations, multigrid methods are well known to be fast solvers showing optimal convergence behavior. However, if a geometric multigrid solver is naively applied to a linear system arising from an isogeometric discretization, the convergence rates deteriorate significantly if the spline degree is increased. Recently, a robust approximation error estimate and a corresponding inverse inequality for B-splines of maximum smoothness have been shown, both with constants independent of the spline degree. In the present paper, we use these results to construct a multigrid solver for discretizations based on B-splines with maximum smoothness which exhibits robust convergence rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Multigrid for Isogeometric Analysis Based on Stable Splittings of Spline Spaces

We present a robust and efficient multigrid method for single-patch isogeometric discretizations using tensor product B-splines of maximum smoothness. Our method is based on a stable splitting of the spline space into a large subspace of “interior” splines which satisfy a robust inverse inequality, as well as one or several smaller subspaces which capture the boundary effects responsible for th...

متن کامل

JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction

The fast solution of linear systems arising from an isogeometric discretization of a partial differential equation is of great importance for the practical use of Isogeometric Analysis. For classical finite element discretizations, multigrid methods are well known to be fast solvers showing optimal convergence behavior. However, if a geometric multigrid solver is naively applied to a linear sys...

متن کامل

IMPOSITION OF ESSENTIAL BOUNDARY CONDITIONS IN ISOGEOMETRIC ANALYSIS USING THE LAGRANGE MULTIPLIER METHOD

NURBS-based isogeometric analysis (IGA) has currently been applied as a new numerical method in a considerable range of engineering problems. Due to non-interpolatory characteristic of NURBS basis functions, the properties of Kronecker Delta are not satisfied in IGA, and as a consequence, the imposition of essential boundary condition needs special treatment. The main contribution of this study...

متن کامل

Analysis of thin plates by a combination of isogeometric analysis and the Lagrange multiplier approach

The isogeometric analysis is increasingly used in various engineering problems. It is based on Non-Uniform Rational B-Splines (NURBS) basis function applied for the solution field approximation and the geometry description. One of the major concerns with this method is finding an efficient approach to impose essential boundary conditions, especially for inhomogeneous boundaries. The main contri...

متن کامل

ISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM

One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015